

0040-4039(94)02477-4

Asymmetric Synthesis of the C(17)-C(27) Segment of the Antineoplastic Macrolide Bryostatin 1

Karl J. Hale,* J. A. Lennon, Soraya Manaviazar, Muhammad H. Javaid

The Christopher Ingold Laboratories, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.

and

Christopher J. Hobbs

Roche Products Limited, Welwyn Garden City, Herts AL7 3AY, UK.

Abstract: An asymmetric synthesis of the C(17)-C(27) segment of bryostatin 1 is described.

Bryostatin 1 is a recently discovered antineoplastic macrolide isolated from the marine organism *Bugula neritina*.^{1,2} Bryostatin 1 displays potent antitumour activity against a range of liquid and solid animal tumours, that include the murine P388 lymphocytic leukaemia, where it leads to a 96% life extension at 70 μg/kg,¹ and the murine M531 ovarian sarcoma where it produces a 68% life extension when administered at 40 μg/kg.² The exact sequence of biological events by which bryostatin 1 induces tumour regression remains unknown. One hypothesis^{3,4} is that bryostatin 1 synergises with interleukin 4 (IL-4) and interleukin-2 (IL-2) to activate protein kinase C, and that this stimulates the maturation of cytotoxic T-lymphocytes from naive, resting T-lymphocytes. Bryostatin 1 then cooperatively activates the newly primed cytotoxic T-cells, along with IL-4 and IL-2, to promote the non-specific lysis of tumour cells. While this mechanism of antitumour action for bryostatin 1 is very appealing,^{3,4} further studies are going to be necessary before it is conclusively proven *in vivo*. Such investigations might be facilitated by the availability of bryostatin 1 analogues for use as biological probes. As a result, we have initiated a total synthesis programme^{5,6} on bryostatin 1 (1), and herein, describe our asymmetric synthesis of 2, an advanced intermediate corresponding to the C(17)-C(27) sector.

Our retrosynthetic analysis of bryostatin 1 is outlined in Scheme 1. The key steps in our plan were a Claisen condensation between anion 3 and ester 4 to establish the C(18)-C(19) bond, subsequent unmasking of the C(20), C(21) and C(23) hydroxyl protecting groups, a Fischer glycosidation to introduce the axial methyl glycoside at C(19), and a butyrolactonisation between the C(17)-ester and the C(20)-hydroxy group. This would expose the secondary alcohol at C(21) for oxidation and Wittig olefination to install the exocyclic α,β -unsaturated ester of 2. Ester 4 would be obtainable from aldehyde 6 through a Wittig olefination/Sharpless asymmetric dihydroxylation (AD) tactic. AD technology⁷ could also be used to stereoselectively introduce the two hydroxy stereocentres in 7, if chemoselectively applied on diene 8.8 Homologation of the double bond in 7 to give an allylic alcohol might then allow the C(23)-hydroxyl group to be installed through a Sharpless epoxidation/REDAL reduction sequence.

Asymmetric dihydroxylation⁷ of diene 8 with AD-mix-β (0.6 equiv) occurred selectively across the (E)disubstituted olefin, to deliver known diol 7 in 45-58% yield. The two hydroxy groups in 7 were protected as tbutyldimethylsilyl ethers by treatment with t-butyldimethylsilyl chloride (2.4 equiv) and imidazole (3.0 equiv) in DMF (ca. 1M) at 70°C, and the double bond oxidatively cleaved with catalytic osmium tetroxide (1.8 mol %) and sodium periodate (6.5 equiv) in aqueous THF. The resulting aldehyde 9 reacted readily with stabilised ylid 5 (3.0 equiv) in CH₂Cl₂ (ca. 1M) to provide alkene 10 as essentially one geometrical isomer. After reduction of the ester group with DIBAL-H (2.2 equiv), a Sharpless asymmetric epoxidation was carried out on the (E)-allylic alcohol with (-)-DET as the chiral additive. Epoxy alcohol 11 {{α}_D +48.4° (c 0.5, CH₂Cl₂)}was obtained in 89% yield and >96% ee; it underwent regioselective reduction ¹⁰ with REDAL (5.0 equiv) in THF (ca. 0.68 M) between -30 and -20 °C to afford diol 12 {[a]D +18.4° (c 0.5, CH2Cl2)} in 83% yield. After protection of the 1,3-diol as its p-methoxybenzylidene acetal, reductive cleavage 11 was performed with DIBAL-H (2.4 equiv) in CH₂Cl₂ (ca. 1M). This furnished primary alcohol 13 in 60-69% yield for the two steps. Compound 13 was then oxidised to aldehyde 6,12 and a Wittig reaction performed to obtain 14 as the major geometrical isomer. The Sharpless AD reaction on alkene 14 with AD-mix-β (3.85 equiv) and methanesulfonamide (3.8 equiv) proved rather slow, taking 3 days at 0°C to reach completion. However, it did successfully install the C(20)-hydroxy stereocentre with total stereocontrol in 86% yield. The diol unit in 15 was next protected as an isopropylidene acetal, and a Claisen condensation executed with the lithium enolate obtained from treating methyl isobutyrate (7.4 equiv) with LDA (7.0 equiv) in THF at -75°C. The Claisen condensation was essentially complete after 90 min at -75°C and delivered β -keto ester 16 {[α]D +38.4° (c 0.5, CH₂Cl₂)} in 85% yield. O-Desilylation was accomplished with HF-pyridine complex (2.4 equiv) in THF (ca. 0.14 M) at -5°C. The resulting diol was then O-pivaloylated, and the p-methoxybenzyl ether removed¹³ with DDQ (1.5 equiv) in CH₂Cl₂-H₂O (17:1, ca. 0.14 M) to give alcohol 17. The best conditions for removing the acetonide group from 17 involved the use of Amberlyst-15 (H+) resin in methanol at 45°C for 30 h. This not only instigated cyclisation to the butyrolactone 14 but also induced ring-closure of the pyran hemiketal ring system. Fischer glycosidation¹⁵ of the bicyclic lactol proceeded slowly with acetyl chloride (18.5 equiv) in methanol (ca 0.16 M) at 40°C for 28 h, but did produce methyl glycoside 18 $\{ [\alpha]_D + 28.5^{\circ} (c 0.2, CH_2Cl_2) \}$ in 56% yield from 17. All that now remained to complete the synthesis of 2 was oxidation of alcohol 18 with ruthenium trichloride (8 mol%) and sodium periodate (2.0 equiv) in MeCN:CCl₄:H₂O (2:2:3), ¹⁶ followed by a Wittig reaction with MeO₂CCH=PPh₃ (2.8 equiv) in dichloromethane. Somewhat surprisingly, this olefination proved to be non-stereoselective, delivering a 1:1 mixture of (E)- and (Z)-isomers in 82 % yield; the latter were successfully separated by multiple-elution preparative TLC. The double-bond geometry in alkene 2 was apparent from the 400 MHz ¹H NMR NOESY

spectrum in C₆D₆. This revealed a strong NOE between the equatorial hydrogen at C(20), which resonated as a singlet at δ 4.07, and the olefinic hydrogen at δ 5.85 which resonated as a narrow doublet (J = 1.8 Hz). In addition, the equatorial allylic hydrogen at C(22) resonated as a double-doublet at δ 3.91 (J = 1.8, 14.1 Hz); its

chemical shift was indicative of it residing in the deshielding cone of the α , β -unsaturated ester carbonyl group. The axial hydrogen at C(22) resonated as a doublet of double-doublets at δ 2.09 (J = 1.8, 11.7, 14.0 Hz). As one would expect, the C(22) equatorial hydrogen also showed a strong NOE with the axial hydrogen at C(23), which indicated that both these hydrogens were *syn*-related. The C(23) hydrogen appeared as a multiplet at δ 3.70 and gave rise to a significant NOE with the methoxy group of the methyl glycoside (s, δ 3.11), confirming their 1,3-diaxial relationship. The low-field positions of the C(25) hydrogen (δ 5.38, m) and the C(26) hydrogen (δ 5.01, m) corroborated the presence of O-pivaloate esters at these positions. Evidence for the γ -butyrolactone ring system was provided by the IR spectrum of 2 (KBr) which displayed an intense C=O stretching absorption at 1793 cm⁻¹; its high frequency position was suggestive of significant angular strain within the lactone ring. Compound 2 also gave a satisfactory microanalysis for C₂₇H₄₂O₁₀ (Calcd.: C, 61.58; H, 8.04%. Found: C, 61.42; H, 8.40%). Further synthetic studies on bryostatin 1 will be reported in due course.

Acknowledgements: We are very grateful to the University of London Central Research Fund, Roche Products, Rohm & Haas (Philadelphia), and Pfizer (Sandwich) for their generous financial support of this investigation. We thank Roche Products and the SERC for the award of a CASE studentship (JL), and the ULIRS for HRMS and high-field NMR measurements.

References and Notes

- 1. Pettit, G.R.; Herald, C.L.; Clardy, J.; Arnold, E.; Doubek, D.L.; Herald, D.L., J. Am. Chem. Soc., 1982, 104, 6846.
- 2. Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tozawa, M., J. Am. Chem. Soc., 1984, 106, 6768.
- 3. Trenn, G.; Pettit, G.R.; Takayama, H.; Hu-Li, J.; Sitkovsky, M.V., J. Immunol., 1988, 140, 433.
- 4. Hess, A.D.; Silanskis, M.K.; Esa, A.H.; Pettit, G.R.; Stratford May, W., J. Immunol., 1988, 141, 3263.
- Total synthesis of bryostatin 7: Blanchette, M.A.; Malamas, M.A.; Nantz, M.H.; Roberts, J.C.; Somfai, P.; Whritenour, D.C.; Masamune, S.; Kageyama, M.; Tamura, T., J. Org. Chem., 1989, 54, 2817; Masamune, S., Pure Appl. Chem., 1988, 60, 1587; Kageyama, M.; Tamura, T.; Nantz, M.H; Roberts, J.C.; Somfai, P.; Whritenour, D.C.; Masamaune, S., J. Am. Chem. Soc., 1990, 112, 7407.
- Synthetic Studies on the bryostatins: Roy, R.; Rey, A.W.; Charron, M.; Molino, R., J. Chem. Soc. Chem. Commun., 1989, 1308; Munt, S.P.; Thomas, E.J., J. Chem. Soc. Chem. Commun., 1989, 480; Evans, D.A.; Carreira, E.M., Tetrahedron Lett., 1990, 31, 4703; Roy, R.; Rey, A.W., Synlett. 1990, 448; Evans, D.A.; Gauchet-Prunet, J.A.; Carreira, E.M.; Charette, A.B., J. Org. Chem., 1991, 56, 741; De Brabander, J.; Vanhessche, K.; Vandewalle, M., Tetrahedron Lett., 1991, 32, 2821; Ohmori, K.; Suzuki, T.; Miyazawa, K.; Nishiyama, S.; Yamamura, S., Tetrahedron Lett., 1993, 34, 4981; De Brabander, J.; Vandewalle, M., Synlett, 1994, 231; De Brabander, J.; Vandewalle, M., Synthesis, 1994, 855.
- Sharpless, K.B.; Amberg, W.; Bennani, Y.L.; Crispino, G.A.; Hartung, J.; Jeong, K.-S; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L., J. Org. Chem., 1992, 57, 2768.
- 8. Xu, D.; Crispino, G.A.; Sharpless, K.B., J. Am. Chem. Soc., 1992, 114, 7570.
- 9. Gao, Y.; Hanson, R.M.; Klunder, J.M.; Ko, S.Y.; Masamune, H.; Sharpless, K.B., J. Am. Chem. Soc., 1987, 109, 5765.
- 10. Ma, P.; Martin, V.S.; Masamune, S.; Sharpless, K.B.; Viti, S.M., J. Org. Chem., 1982, 47, 1378.
- 11. Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K., Chem. Lett., 1983, 1593.
- 12. Mancuso, A.J.; Huang, S.-L.; Swern, D., J. Org. Chem., 1978, 43, 2480.
- 13. Horita, K; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O., Tetrahedron, 1986, 42, 3021.
- 14. Tanimoto, N.; Gerritz, S.W.; Sawabe, A.; Noda, T.; Filla, S.A.; Masamune, S., Angew. Chem. Int. Edn. Engl., 1994, 33, 673.
- 15. Caldwell, C.G.; Rupprecht, K.M.; Bondy, S.; Davis, A.A., J. Org. Chem., 1990, 55, 2355.
- 16. Carlsen, P.H.J.; Katsuki, T.; Martin, V.S.; Sharpless, K.B., J. Org. Chem., 1981, 46, 3936.
- 17. All new compounds gave satisfactory 400 MHz ¹H and 100 MHz ¹³C NMR and IR spectra, as well as appropriate parent ion identification by HRMS and/or C and H combustion microanalyses within 0.4%.